Impact of technological innovation.

Technology innovation has accelerated progress in Information and Communications Technology (ICT), especially in the mobile phones sector. Concurrently, local, national, and international governments are enforcing stricter regulations to protect natural resources and human health. The paper attempts to address the question: Have technological innovations and regulation development had a positive impact on ecosystems and public health? We identified 36 waste mobile phones (WMPs) manufactured between 2002 and 2013, assessed their metals concentration, leachability, and potential impact on environment and human health using digestion, Toxicity Characteristic Leaching Procedure (TCLP), and USEtox model, respectively. The results highlight that regulations did not have significant impact on total metal content, except some heavy metals, while technology innovation recorded stronger impact. WMPs should be classified as hazardous due to excessive lead content. Copper posed the most significant ecotoxicity risk, and chromium showed the most significant risk for both cancerous and non-cancerous diseases. Additionally, we demonstrated that WMPs toxicity increased with technology innovation.

Introduction

The first mobile phone invented by Marty Cooper 44 years ago, weighed 2.5 pounds, was 9 inches in length, 5 inches in thickness, required ten hours to charge, and functioned for 20 minutes1. Today, mobile phones are versatile and work like professional computers and cameras; are much lighter, compact, beautiful, and intelligent; and have become an indispensable part of human lives2. Accelerated innovation has lead to proliferation in mobile phone production. International Telecommunication Unions3 reported that 781 million mobile phones were generated in 2015 and the numbers will increase to 877 million units by 2020. However, rapid innovation has also reduced the usage span of phones4, resulting in increase in the number of waste mobile phones (WMPs), categorised as waste electric and electronic equipment (WEEE), also called as electronic waste or e-waste5,6. WMPs and waste printed circuit boards (WPCBs) are listed as one of hazardous wastes by the U.S., European Union, China, and other nations.

E-waste is the core of “urban mining” due to abundant content of secondary materials, especially valuable metals such as copper, gold, and palladium10,11. Gold contained in WMPs are higher than other e-waste. For example, gold in WPCBs of WMPs is 300 g per ton compared to 100 g per ton found in WPCBs of desk computers12. Consequently, WMPs can be considered as the core of e-waste. At present, recovery, reuse, and recycling are considered as the most effective approaches to WMPs management13. However, only 10% of the end-of-life mobile phones are recycled in the U.S.; the residual 90% are stored at homes by users or are dumped in landfills14, where they leach toxic substances into the environment and threaten the ecosystem and human health15,16.

Toxic substances including heavy metals such as lead, zinc, chromium, cadmium, and brominate flame retardants like PBBs and PBDEs threaten the ecosystem and human health, especially when treated improperly17,18. Although regulations vary across countries, they are increasingly stricter due to environmental and public health concerns19. In the past 20 years, local, national, and international governments have enacted series of regulations and laws to restrict the use of hazardous materials in information and communication equipment20. The best examples are the “Directive on the restriction of the use of certain hazardous substance in electrical and electronic equipment” (RoHS) and the “Waste Electrical and Electronic Equipment Directive” (WEEE) by the European Union which specify the thresholds for six hazardous substances. Meanwhile, electric and electronic equipment (EEE) industry pursuits have persisted on technology innovation by applying new materials and restricting hazardous substances in response to public awareness of environmental protection and cost reduction7. Innovation is especially significant in the Information and Communication Technology (ICT) industry and the mobile phones sector. Consequently, this research addresses the question: “Will such significant changes in materials resources caused by regulation development and technology innovation reduce the chemical toxicity risk of WMPs?” To the best of our knowledge, this issue has not been previously investigated.

We collected WMPs generated between 2002 and 2013 and analyzed metals to assess the effect of technological innovation and regulations. We conducted chemical leaching assessment procedures to evaluate if the WMPs should be classified as hazardous waste. We also employed a life cycle impact model, USEtox21,22, to evaluate the ecological toxicity and human health (cancer and non-cancer related) impacts of WMPs caused by technological innovation and regulations. We expect these results will provide valuable information to guide the administration and industry to set up cost-effective and efficient approaches to eliminate chemical toxicity risks of electric and electronic products.

Leave a Reply

Your email address will not be published. Required fields are marked *